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Abstract
We introduce the Richelot class of superintegrable systems in N-dimensions
whose n � N equations of motion coincide with the Abel equations on the
n − 1 genus hyperelliptic curve. Corresponding additional integrals of motion
are the second-order polynomials of momenta and multiseparability of the
Richelot superintegrable systems is related to the classical theory of covers of
the hyperelliptic curves.

PACS numbers: 45.10.Na, 45.40.Cc

In the antique rarely-read collections of scientific societies as well
as in the comprehensive scientific correspondence of the scientist of
the past, an enormous quantity of scientific matter is contained, from
which anyone capable can find something motivating to start their own
work, as well as simultaneously learn something useful.

K Weierstrass, ‘The speech delivered upon assuming the position of
Rector of Berlin University on October 15, 1873’, Phys. Usp. 42
1219 (1999)

1. Introduction

In classical mechanics, superintegrable systems are characterized by the fact that they possess
more than N integrals of motion which are functionally independent, globally defined in a 2N -
dimensional phase space. In particular, when the number of integrals is 2N − 1, the systems
are said to be maximally superintegrable. The dynamics of these systems is particularly
interesting: all bounded orbits are closed and periodic [5]. The phase space topology is also
very rich: it has the structure of a symplectic bifoliation, consisting of the usual Liouville–
Arnold invariant fibration by Lagrangian tori, and of a (coisotropic) polar foliation [24].

The notion of superintegrability possesses an interesting analogue in quantum mechanics.
Sommerfeld and Bohr were the first to note that systems allowing separation of variables in
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more than one coordinate system may admit additional integrals of motion. Superintegrable
systems show accidental degeneracy of the energy levels, which can be removed by taking
into account the quantum numbers associated with the additional integrals of motion; some of
their bound state energy levels may be calculated algebraically and the corresponding wave
functions are expressed in terms of polynomials. One of the best examples of this phenomenon
is provided by the harmonic oscillator and the Kepler–Coulomb problem. A large number
of papers have been published on superintegrability in recent years, most of them related to
the second-order integrals of motion (see [3, 6, 9, 11, 15, 18, 22, 27, 31–33] for some recent
results and an extensive list of references).

Systematic investigations of superintegrable systems have a very long history, which
began in 1761 when Euler proposed construction of the additional algebraic integral for the
differential equation

dx1√
f (x1)

± dx2√
f (x2)

= 0,

where f is an arbitrary quartic [12]. The corresponding superintegrable Stäckel systems have
been classified in [18].

The Abel theorem may be regarded as a generalization of these Euler results. Recall that
the Abel equations

n∑
j=1

ui(xj ) dxj√
f (xj )

= 0, i = 1, . . . , p, (1.1)

play a pivotal role in classical mechanics and that there are two approaches to the investigation
of the Abel equations associated with Jacobi and Richelot, respectively (see the 30th lecture
in [13]). In modern mathematics, the first approach or the Abel–Jacobi map is one of the main
constructions of algebraic geometry which relates the algebraic curve to its Jacobian variation.
The second approach yields the theory of addition theorems, moduli (modular equations),
cryptography and so on.

The aim of this paper is to discuss the Richelot construction of addition integrals for the
Abel equations and construction of the corresponding N-dimensional superintegrable systems
in classical mechanics. We treat only classical superintegrable systems here, though the
corresponding results for the quantum systems follow easily. The discussion of criteria of
superintegrability in physical variables goes beyond the scope of this paper.

The paper is organized as follows. In section 2, the main Richelot results are briefly
reviewed. Then we discuss possible application of these results to classification of the
superintegrable Stäckel systems. In section 3, the classification of superintegrable systems
separable in orthogonal coordinate systems is treated and solved. Some open problems are
discussed in the final section.

2. The Richelot superintegrable systems

In this section we use the original Richelot notations [26].
Let y be the algebraic function of x defined by an equation of the form

�(x, y) = ym + f1(x)y
m−1 + · · · + fm(x) = 0, (2.1)

where f1(x), . . . , fm(x) are rational polynomials in x. According to the Abel theorem, a
system of the p differential equations

dui

dx1
dx1 + · · · +

dui

dxN

dxN = 0, i = 1, . . . , p
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have additional algebraic integrals if N > p and if u1, . . . , up is a set of linearly independent
Abelian integrals of the first kind on the algebraic curve (2.1).

There is a generic formal method of finding algebraic integrals of these differential
equations [2].

For the particular forms of the curve (2.1) there are some explicit formulae due to Euler
[12], Lagrange [23], Jacobi [14], Richelot [26], Weierstrass [34] and others [2, 8, 16].

2.1. The Richelot integrals

Following Richelot [26] we will consider the hyperelliptic curve

y2 = f (x) ≡ A2nx2n + A2n−1x2n−1 + · · · + A1x + A0 (2.2)

and the following system of n − 1 differential equations:

dx1√
f (x1)

+
dx2√
f (x2)

+ · · · +
dxn√
f (xn)

= 0,

x1 dx1√
f (x1)

+
x2 dx2√
f (x2)

+ · · · +
xn dxn√
f (xn)

= 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (2.3)

xn−2
1 dx1√
f (x1)

+
xn−2

2 dx2√
f (x2)

+ · · · +
xn−2
n dxn√
f (xn)

= 0.

Let ak be the values of x at the branch points of the curve (2.2) and F(x) = (x − x1)(x −
x2) · · · (x − xn); then in the generic case additional integrals of the Abel equations (2.3) are
equal to

Ck =
[√

f (x1)

F ′(x1)
· 1

ak−x1
+ · · · +

√
f (xn)

F ′(xn)
· 1

ak−xn

]2[√
f (x1)

F ′(x1)
+ · · · +

√
f (xn)

F ′(xn)

]2 − A2n

F (ak). (2.4)

If A2n = 0 additional integrals of equations (2.3) look like

Ck =
[√

f (x1)

F ′(x1)
· 1

ak − x1
+ · · · +

√
f (xn)

F ′(xn)
· 1

ak − xn

]2√
F(ak). (2.5)

There are n − 1 functionally independent integrals of motion Ck and, of course, their
combinations are integrals of motion too.

Using special combinations of Ck we can avoid calculations of the values ak of x at the
branch points [14, 26, 34]. As an example, in his paper, Richelot found the following two
algebraic integrals:

K1 =
[√

f (x1)

F ′(x1)
+ · · · +

√
f (xn)

F ′(xn)

]2

− A2n−1(x1 + · · · + xn) − A2n(x1 + · · · + xn)
2 (2.6)

and

K2 =
[ √

f (x1)

x2
1F

′(x1)
+ · · · +

√
f (xn)

x2
nF

′(xn)

]2

x2
1x2

2 · · · x2
n − A1

(
1

x1
+ · · · +

1

xn

)
−A0

(
1

x1
+ · · · +

1

xn

)2

. (2.7)

The generating function of additional integrals was proposed by Weierstrass [34], see [2] for
details.
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2.2. Construction of the Richelot superintegrable systems

Let us apply the Richelot construction to the classification of the superintegrable systems in
classical mechanics.

Definition 1. An N-dimensional integrable system is a superintegrable Richelot system if
n − 1, 1 < n � N , equations of motion in some variables coincide with the Abel–Richelot
equations (2.3).

In this case there are additional Richelot integrals or constants of motion for any underlying
Hamiltonian and Poisson structures because it is the property of the equations of motion only.

It is easy to get a lot of examples of the superintegrable Richelot systems in the framework
of the Jacobi separation of variables method, see [18, 31–33].

Let us start with the maximally superintegrable Richelot systems at N = n. In this case
our construction consists of one hyperelliptic curve (2.2)

μ2 = f (λ), where f (λ) = A2nλ
2n + A2n−1λ

2n−1
i + · · · + A1λ + A0, (2.8)

and n arbitrary substitutions

λj = vj (qj ) μj = uj (qj )pj , j = 1, . . . , n, (2.9)

where p and q are canonical variables {pj , qi} = δij or variables of separation.
The n copies of this hyperelliptic curve and these substitutions give us n separated relations

p2
j u2

j (qj ) = A2nvj (qj )
2n + A2n−1vj (qj )

2n−1
i + · · · + A1vj (qj ) + A0, j = 1, . . . , n,

(2.10)

where 2n+ 1 coefficients A2n, . . . , A0 are linear functions of n integrals of motion H1, . . . , Hn

and 2n + 1 parameters α0, . . . , α2n+1.
Solving these separated equations with respect to Hk, one gets functionally independent

integrals of motion in the involution

Hk =
n∑

j=1

(S−1)jk

(
p2

j + Uj(qj )
)
, k = 1, . . . , n = N, (2.11)

where Uj(qj ) are the so-called Stäckel potentials and S is the Stäckel matrix [28].
If H1 is the Hamilton function, then coordinates qj (t, α1, . . . , αn) are determined from

the Jacobi equations
n∑

j=1

∫
S1j (qj ) dqj√∑n

k=1 αkS1j (qj ) − Uj(qj )

= τ − t, (2.12)

and
n∑

j=1

∫
Sij (qj ) dqj√∑n

k=1 αkSkj (qj ) − Uj(qj )

= βi, i = 2, . . . , n, (2.13)

where t is the time variable conjugated to the Hamilton function H1. According to Jacobi [13]
these equations are another form of the Abel equations (1.1) and describe inversion of the
corresponding Abel map.

In order to use the Richelot results we have to impose some constraints on the entries
of the Stäckel matrix Skj (qj ), which gives rise to some restrictions on the coefficients Ak

[18, 31].
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Proposition 1. If we compare n−1 equations (2.3) and equations (2.13) at λ = x, one obtains
that for the Richelot systems the Stäkel matrix in λ variables has to be one of the following
matrices:

S(k) =

⎛⎜⎜⎜⎜⎜⎜⎝
λk

1 λk
2 · · · λk

n

λn−1
1 λn−1

2 · · · λn−1
n

λn−2
1 λn−2

2 · · · λn−2
n

...
...

. . .
...

1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠ , k = n, n + 1, . . . , 2n, (2.14)

so that

μ2 = f (λ) = λkH1 + λn−1Hn−1 + · · · + Hn−1λ + Hn +
2n∑

j=0

αjλ
j , αj ∈ R. (2.15)

Since k is an arbitrary number from n to 2n we have a family of dual Stäckel systems
associated with one hyperelliptic curve (2.8) and different blocks of the corresponding Brill–
Noether matrix [29, 30].

Remark 1. For any two dual systems with Hamiltonians H1 and H̃1, the corresponding Stäckel
matrices S(k) and S(̃k) are distinguished on the first row only. These Stäckel systems are related
by a canonical transformation of time t → t̃

H̃1 = v(q)H1, d̃t = v(q) dt, where v(q) = det S(k)

det S(̃k)
. (2.16)

Such dual systems have common trajectories with different parametrization by time [30, 22].
The existence of such dual systems is related to the fact that the Abel map is surjective and
generically injective.

Remark 2. For dual systems, the corresponding hyperelliptic curves (2.15) are related by
permutation of one of α’s and Hamiltonian H1 and, therefore, such transformations are called
the coupling constant metamorphoses [7, 19, 30]. Such transformations are related to the
reciprocal transformations as well [1].

Now let us briefly consider the construction of the superintegrable Richelot systems for
which n − 1 equations of motion among the N equations of motion are the Abel–Richelot
equations only. In this case n separated relations (2.10) have to be complemented by N − n
separated relations

�m(pm, qm,H1, . . . , HN) = 0, n < m � N.

Solving this complete set of the separated equations with respect to the integrals of motion
Hk we have to get N functionally independent integrals of motion (2.11). As above, the Abel
equations have to coincide with the Richelot equations (2.3); therefore, the n × n block of the
N×N Stäckel matrix has to be a matrix like (2.14). If we take into account all these restrictions,
one gets the complete classifications of the superintegrable Stäckel–Richelot systems.

The main problem is that we want to get a special class of Hamiltonians Hj in physical
variables x instead of the Stäckel integrals (2.11) in terms of the abstract separated variables
q, which could be related to physical variables by an arbitrary canonical transformation.
According to [18, 31, 33], this problem may be solved if we consider natural Hamiltonians
and point transformations. In this case it leads to some additional restrictions on the coefficients
Aj in (2.8) and substitutions (2.9), which allows us to get some generic classification.

5
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It is easy to see that the Stäckel integrals of motion Hk (2.11) and the Richelot additional
integrals of motion are the second-order polynomials in momenta

K1 =
[

u1p1

F ′(v1)
+ · · · +

unpn

F ′(vn)

]2

− A2n−1(v1 + · · · + vn) − A2n(v1 + · · · + vn)
2 (2.17)

and

K2 =
[

u1p1

v2
1F

′(v1)
+ · · · +

unpn

v2
nF

′(vn)

]2

v2
1v

2
2 · · · v2

n

−A1

(
1

v1
+ · · · +

1

vn

)
− A0

(
1

v1
+ · · · +

1

vn

)2

. (2.18)

Here uj and vj are functions on coordinates only.
So, in the Stäckel–Richelot case all the integrals of motion are the second-order

polynomials in momenta, and this allows us to find natural Hamiltonian superintegrable
systems on the Riemannian manifolds using the well-studied theory of the orthogonal
coordinate systems and the corresponding Killing tensors [4, 10, 21, 25].

3. The Richelot systems separable in orthogonal coordinate systems

All the orthogonal separable coordinate systems can be viewed as an orthogonal sum of certain
basic coordinate systems [4, 10, 21, 25]. Below we consider some of these basic coordinate
systems in an n-dimensional Euclidean space only.

3.1. The basic orthogonal coordinate systems

Definition 2. The elliptic coordinate system {qi} in an N-dimensional Euclidean space EN

with parameters e1 < e2 < · · · < eN is defined through the equation

e(λ) = 1 +
N∑

k=1

x2
k

λ − ek

=
∏N

j=1(λ − qj )∏N
i=1(λ − ei)

. (3.1)

The defining equation (3.1) should be interpreted as an identity with respect to λ.
It is possible to degenerate the elliptic coordinate systems in a proper way by letting two

or more of the parameters ei coincide. Then the ellipsoid will become a spheroid, or even a
sphere, if all parameters coincide. The rotational symmetry of dimension m is thus introduced
if m + 1 parameters coincide.

Example 1. As an example when e1 = e2, we have

e(λ) = 1 +
r2

λ − e1
+

N∑
i=3

x2
i

λ − ei

=
∏N−1

i=1 (λ − qi)∏N−1
j=1 (λ − ej )

, r2 = x2
1 + x2

2 . (3.2)

It defines the elliptic coordinate system in EN−1 = {r, x3, . . . , xN }. In order to get an
orthogonal coordinate system {q1, . . . , qN } in EN , we could complement r with the angular
coordinate qN in the {x1, x2}-plane, for instance through

x1 = r cos qN, x2 = r sin qN, where r =
√

res|λ=e1
e(λ). (3.3)

At N = 3 these equations define the prolate spherical coordinate system.

6
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When e1 = e2 = · · · = en, the only remaining coordinate is r =
√∑

x2
i and N − 1

angular coordinates have to be introduced on the unit sphere SN−1. According to [21] these
angular coordinates are also called ignorable coordinates.

Definition 3. The parabolic coordinate system {qi} in EN with parameters e1 < e2 < · · · <

eN−1 is defined through the equation

e(λ) = λ − 2xN −
N−1∑
k=1

x2
k

λ − ek

=
∏N

j=1(λ − qj )∏N−1
i=1 (λ − ei)

. (3.4)

This orthogonal coordinate system can, in fact, be derived from the elliptic coordinate
system as well. Namely, substitute

xi = x ′
i√
ei

, i = 1, . . . , N − 1, xN = x ′
N − eN√

eN

into (3.1) and let eN tend to infinity, then drop the primes and one gets the parabolic coordinate
system.

The parabolic coordinate system can be degenerated in the same way as the elliptic
coordinate system.

Example 2. If e1 = e2, we have

e(λ) = λ − 2xN − r2

λ − e1
−

N−1∑
k=3

x2
k

λ − ek

=
∏N−1

j=1 (λ − qj )∏N−2
i=1 (λ − ei)

, r2 = x2
1 + x2

2 . (3.5)

As above, in order to get an orthogonal coordinate system {q1, . . . , qn} in EN , we could
complement r with an angular or ignorable coordinate qN in the {x1, x2}-plane defined by
(3.3). At N = 3 it is the so-called rotational parabolic coordinate system.

Definition 4. The elliptic coordinate system {qi} on the sphere SN with parameters e1 <

e2 < · · · < eN+1 is defined through the equation

e(λ) =
N+1∑
k=1

x2
k

λ − ek

=
∏N

j=1(λ − qj )∏N+1
i=1 (λ − ei)

. (3.6)

Note that (3.6) implies
∑N+1

i=1 x2
i = 1. Similarly, we can define the elliptic coordinate

system {qi} on the hyperboloid HN with x2
0 −∑N

i=1 x2
i = 1 [21]. As above, these coordinates

can be degenerated by letting some, but not all, parameters ei coincide.

Remark 3. There are some algorithms [4, 25] and software [17, 20] that for a given natural
Hamilton function H = T + V determine if separation coordinates exist, and in that case,
show how to construct them, i.e. how to get the determining function e(λ).

3.2. The maximally superintegrable Richelot systems

The basic orthogonal coordinate systems are defined by the function

e(λ) =
∏N

i=1(λ − qj )∏M
j=1(λ − ej )

= φ(λ)

u(λ)
M = N,N ± 1, (3.7)

7
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which is the ratio of the following polynomials:

φ(λ) =
N∏

i=1

(λ − qj ) and u(λ) =
M∏

j=1

(λ − ej ). (3.8)

We can describe the maximally superintegrable Richelot systems separable in these
coordinate systems using the following proposition.

Proposition 2. If n = N separated relations have the following form

p2
i u(qi)

2 = 1

2

[
u(λ) ·

(
H1λ

k +
N∑

i=2

Hiλ
n−i

)
− α(λ)

]
λ=qi

, α(λ) =
2N∑
j=0

αjλ
j , (3.9)

where α(λ) is an arbitrary polynomial, then equations of motion (2.13) are the Abel–Richelot
equations (2.3).

If k = n, the corresponding maximally superintegrable Hamiltonian H1

H1 = T + V =
N∑

i=1

res

∣∣∣∣∣
λ=qi

1

e(λ)
· p2

i −
N∑

i=1

res

∣∣∣∣∣
λ=qi

α(λ)

u2(λ)e(λ)

has a natural form in Cartesian coordinates in En

H1 = T + V = 1

2

N∑
i=1

p2
xi

+
M∑
i=0

res

∣∣∣∣∣
λ=ei

α(λ)

u2(λ)e(λ)
. (3.10)

Here we introduce an additional parameter e0 = ∞.
If k > n then H

(k>n)
1 = v(x)H1, where function v(x) is defined by (2.16).

It is easy to prove that these maximally superintegrable Richelot systems coincide with
the well-known superintegrable systems [3, 9, 11, 15, 22, 27].

For an elliptic coordinate system in EN , equation (3.10) yields the following potential:

V = α2N

(
x2

1 + · · · + x2
n

)
+

N∑
i=1

γi

x2
i

, γi = α(ei)∏
j �=i (ei − ej )2

.

For a parabolic coordinate system in EN one gets

V = α2N

(
x2

1 + · · · 4x2
N

)
+ γNxN +

N−1∑
i=1

γi

x2
i

, γN = 4α2N

∑
ei + 2α2N−1.

For an elliptic coordinate system on the sphere SN or on the hyperboloid HN we obtain

V =
N+1∑
i=1

γi

x2
i

, γi = α(ei)∏
j �=i (ei − ej )2

.

Example 3. Let us consider parabolic coordinates (q1, q2, q3) defined by

e(λ) = λ − 2x3 − x2
1

λ − e1
− x2

2

λ − e2
= (λ − q1)(λ − q2)(λ − q3)

(λ − e1)(λ − e2)
,

whereas the corresponding momenta are equal to

pi = x1px1

2(qi − e1)
+

x2px2

2(qi − e2)
+

px3

2
, i = 1, . . . , 3.

8
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In this case the separated relations (3.9)–(3.15) look like

p2
i (qi − e1)

2(qi − e2)
2 = 1

2 [(H1λ
2 + H2λ + H3)(λ − e1)(λ − e2) − α(λ)]λ=qi

,

i = 1, . . . , 3. (3.11)

On solving these equations with respect to Hk one gets integral of motion and the following
Hamilton function:

H1 = px1 + px2 + px3

2
+ α6

(
x2

1 + x2
2 + 4x2

3

)
+ γ3x3 +

γ1

x2
1

+
γ2

x2
2

+ const. (3.12)

It is the maximally superintegrable Hamiltonian with the Stäckel integrals of motion H2,H3

and two additional Richelot integral of motion K1,2 (2.17)–(2.18):

K1 =
(

(q1 − e1)(q1 − e2)p1

(q1 − q2)(q1 − q3)
+

(q2 − e1)(q2 − e2)p2

(q2 − q1)(q2 − q3)
+

(q3 − e1)(q3 − e2)p3

(q3 − q1)(q3 − q2)

)2

+
α5

2
(q1 + q2 + q3) +

α6

2
(q1 + q2 + q3)

2,

(3.13)

K2 =
(

(q1 − e1)(q1 − e2)p1

(q1 − q2)(q1 − q3)q
2
1

+
(q2 − e1)(q2 − e2)p2

(q2 − q1)(q2 − q3)q
2
2

+
(q3 − e1)(q3 − e2)p3

(q3 − q1)(q3 − q2)q
2
3

)2

q2
1q2

2q2
3

+
H3e1 + (H3 − H2e1)e2

2

(
1

q1
+

1

q2
+

1

q3

)
− e1e2H3

2

(
1

q1
+

1

q2
+

1

q3

)2

.

In physical variables (x, px) these integrals have a more complicated structure.
It is easy to prove that integrals H1,H2,H3 and K1,K2 are functionally independent. Of

course, all these integrals of motion may be obtained in the framework of the Weierstrass
approach [34] as well.

Example 4. Now let us consider a dual Stäckel system and put k = n + 1 in the Stäckel
matrix (2.14) from the previous example. It means that we change one of the coefficients in
the separated relations (3.11) and consider the following separated relations:

p2
i (qi − e1)

2(qi − e2)
2 = 1

2 [(H̃1λ
3 + H̃2λ + H̃3)(λ − e1)(λ − e2) − α(λ)]λ=qi

,

i = 1, . . . , 3.

On solving these equations one gets the superintegrable system with the Hamiltonian

H̃1 = v(q)H1 = 1

2x3 + e1 + e2
H1,

where H1 is given by (3.12). Of course, this canonical transformation of time changes
additional integrals of motion K1,2 (3.12).

3.3. The superintegrable Richelot systems

Now let us consider degenerate coordinate systems for which two or more of the parameters
ej coincide.

In terms of the separated coordinates, the defining function e(λ) remains a meromorphic
function with n simple roots and m = n, n ± 1 simple poles. For the construction of Richelot
systems, we need degenerations such as 1 < n < N .

In this case in order to get superintegrable Richelot systems with n−1 additional integrals
of motion we have to take n separated relations (3.9)

p2
i u(qi)

2 = 1

2

⎡⎣u(λ) ·
(

H1 λk +
n∑

i=2

Hi λ
n−i

)
− α(λ) +

1

2

N∑
j=n+1

u(λ)

gj (λ)
Hj

⎤⎦
λ=qi

, (3.14)
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and N − n separated relations for ignorable variables

p2
j = 2(Uj (qj ) − Hj), j = n + 1, . . . , N. (3.15)

Here polynomials gj (λ) depend on the degree of degeneracy and the definition of ignorable
variables [4, 21], whereas Uj(qj ) are arbitrary functions on these ignorable (angular)
variables qj.

On solving these equations with respect to the integrals of motion Hj one gets the Hamilton
function in the same form as (3.10) in which, roughly speaking, the trailing coefficient of the
polynomial α(λ) depends on the ignorable variables.

Proposition 3. For degenerate elliptic or parabolic coordinates, superintegrable potentials
have the following form (3.10):

V =
m∑

i=0

res

∣∣∣∣∣
λ=ei

α(λ) − Ui

u2(λ)e(λ)
, e0 = ∞, (3.16)

where Ui = 0 for single roots ei of initial function (λ−e1) · · · (λ−eM) (3.8) after degeneration
ek = ej . For degenerate roots ek = ej , potential Ui are arbitrary functions on the
corresponding ignorable variables.

This allows us to classify all the superintegrable Richelot systems using the known
classification of the orthogonal coordinate systems [3, 9, 11, 15, 18, 22, 27].

Example 5. Let us consider the prolate spherical coordinate system (q1, q2, q3) defined by

e(λ) = 1 +
x2

1 + x2
2

λ − e1
+

x2
3

λ − e3
= (λ − q1)(λ − q2)

(λ − e1)(λ − e3)
, q3 = arctan

(
x1

x2

)
.

The corresponding momenta are

p1 = x1px1 + x2px2

2(q1 − e1)
+

x3px3

2(q1 − e3)
, p2 = x1px1 + x2px2

2(q2 − e1)
+

x3px3

2(q2 − e3)
,

p3 = x2px1 − x1px2 .

In this case g(λ) = (e3 − e1)
−1(λ − e1) and the separated relations (3.14)–(3.15) look like

p2
i (qi − e1)

2(qi − e3)
2 = 1

2

[
(H1λ + H2)(λ − e1)(λ − e2)− α(λ) +

(λ − e3)(e3 − e1)H3

2

]
λ=qi

,

p3 = 2(U(q3) − H3),

where α(λ) = α4λ
4 + α3λ

3 + α2λ
2 + α1λ + α0.

On solving these equations with respect to Hk one gets integrals of motion and the
following Hamilton function:

H1 = px1 + px2 + px3

2
+ α4

(
x2

1 + x2
2 + x2

3

)
+

γ1 − U
(

x1
x2

)
x2

1 + x2
2

+
γ3

x2
3

− 2α4(e3 + e1) − α3,

where

γ1,3 = α(e1,3)

(e1 − e3)2
.

This is the superintegrable Hamiltonian with the Stäckel integrals of motion H2,H3 and
additional Richelot integral of motion K1 (2.17), which is equal to

K1 =
(

(q1 − e1)(q1 − e3)p1

q1 − q2
+

(q2 − e1)(q2 − e3)p2

q2 − q1

)2

− (H1 − α3)(q1 + q2)

2
+

α4(q1 + q2)
2

2
.

10
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In physical variables (x, px) one gets the following expression for this integral of motion:

K1 = (x1px1 + x2px2 + x3px3)
2

4
+

e1 + e3 − x2
1 − x2

2 − x2
3

2
× (α4

(
e1 + e3 − x2

1 − x2
2 − x2

3

)
+ α3 − H1

)
.

The second Richelot integral K2 (2.18) looks like

K2 =
(

(q1 − e1)(q1 − e3)p1

(q1 − q2)q
2
1

+
(q2 − e1)(q2 − e3)p2

(q2 − q1)q
2
2

)2

q2
1q2

2

−A1

(
1

q1
+

1

q2

)
− A0

(
1

q1
+

1

q2

)
,

where

A1 = 1
2 (e1e3H1 − (e1 + e3)H2 + (e1 − e3)H3 − α1),

A0 = 1
2 (e1e3H2 − e3(e1 − e3)H3 − α0).

Of course, substituting H1, . . . , H3 into K2 one gets that K1 = K2, because in this case we
have only one Abel–Richelot equation, i.e. n − 1 = 1. It means that the Hamiltonian H1 in E3

is not maximally superintegrable.

Example 6. Let us consider rotational parabolic coordinates (q1, q2, q3) defined by

e(λ) = λ − 2x3 − x2
1 + x2

2

λ − e1
= (λ − q1)(λ − q2)

λ − e1
, q3 = arctan

(
x1

x2

)
,

where the corresponding momenta look like

p1 = x1px1 + x2px2

2(q1 − e1)
+

px3

2
, p2 = x1px1 + x2px2

2(q2 − e1)
+

px3

2
, p3 = x2px1 − x1px2 .

In this case g(λ) = (λ − e1) and the separated relations (3.14)–(3.15) are equal to

p2
1,2(q1,2 − e1)

2 = 1

2

[
(H1λ + H2)(λ − e1) − α(λ) +

H3

2

]
λ=q1,2

,

p2
3 = 2(U(q3) − H3),

where α(λ) = α4λ
4 + α3λ

3 + α2λ
2 + α1λ + α0.

On solving these equations with respect to Hk one gets integrals of motion and the
following Hamilton function:

H1 = px1 + px2 + px3

2
+ α4

(
x2

1 + x2
2 + 4x2

3

)
+ 2(2α4e1 + α3)x3 +

α(e1) − U
(

x1
x2

)
x2

1 + x2
2

− 3α4e
2
1 − 2α3e1 − α2.

This is the superintegrable Hamiltonian with the Stäckel integrals of motion H2,H3 and the
additional Richelot integral of motion K1 (2.17), which is equal to

K1 =
(

(q1 − e1)p1

q1 − q2
+

(q2 − e1)p2

q2 − q1

)2

+
α3

2
(q1 + q2) +

α4

2
(q1 + q2)

2

= p2
x3

4
+ 2α4x

2
3 + (2α4e1 + α3)x3 +

e1(α4e1 + α3)

2
. (3.17)

As above, K1 = K2 (2.17)–(2.18) in this case.

11



J. Phys. A: Math. Theor. 43 (2010) 055201 A V Tsiganov

Example 7. Let us consider a degenerate elliptic coordinate system on the sphere S3 in E4, so
that coordinates (q1, q2, q3) are defined by

e(λ) = x2
1 + x2

2

λ − e1
+

x2
3

λ − e3
+

x2
4

λ − e4
= (λ − q1)(λ − q2)

(λ − e1)(λ − e3)(λ − e4)
, q3 = arctan

(
x1

x2

)
.

This means that the radius of the sphere is equal to R = ∑4
i=1 x2

i = 1.
In this case g(λ) = (e3 − e1)

−1(e1 − e4)
−1(λ − e1) and a pair of the separated relations

have the common form

p2
i (qi − e1)

2(qi − e3)
2(qi − e4)

2 = 1
2 [(H1λ + H2)(λ − e1)(λ − e3)(λ − e4) − α(λ)

+ (e3 − e1)(e1 − e4)(λ − e3)(λ − e4)H3]λ=q1,2 , (3.18)

where α(λ) is the fourth-order polynomial with arbitrary coefficients and the third separated
relation is equal to

p2
3 = 2(U(q3) − H3).

On solving separated equations with respect to Hk one gets integrals of motion and the following
Hamilton function:

H1 = 1

2

⎛⎝ 4∑
i=1

x2
i ·

4∑
i=1

p2
i −

(
4∑

i=1

xipi

)2
⎞⎠ +

γ1 + U
(

x1
x2

)
x2

1 + x2
2

+
γ3

x3
3

+
γ4

x2
4

− α4

R
,

γi = α(ei)∏
j �=i (ei − ej )2

.

This is the superintegrable Hamiltonian and additional Richelot integral of motion looks like

K1 =
(

(q1 − e1)(q1 − e3)(q1 − e4)p1

q1 − q2
+

(q2 − e1)(q2 − e3)(q2 − e4)p2

q2 − q1

)2

+
(e1 + e3 + e4)H1 + α3 − H2

2
(q1 + q2) +

α4 − H1

2
(q1 + q2)

2. (3.19)

In this case n = 2 and, therefore, K1 = K2 (2.17)–(2.18).
In this case the change of time (2.16) at k = n + 1 yields the following transformation of

the pair of the separated relation (3.14)–(3.18):

p2
i u(qi)

2 = 1

2

[
u(λ) · (H1λ

2 + H2) − α(λ) +
1

2

u(λ)

g3(λ)
H3

]
λ=qi

= H1

2
λ5 + . . .

∣∣∣∣
λ=qi

.

On the right-hand side of this equation we obtain the (2n + 1)-order polynomial in λ and,
therefore, the corresponding Abel equations are no longer the Richelot equations (2.3). This
change of time preserves integrability, but destroys superintegrability.

4. Conclusion

According to [18, 31, 33] there are two classes of superintegrable systems for which the angle
variables are either logarithmic or elliptic functions. In both cases one gets additional single-
valued integrals of motion using addition theorems, which are particular cases of the Abel
theorem. There is one main difference which says that the addition theorem for logarithms
allows us to get the higher order polynomial integrals of motion [31].

The main aim of this paper is to discuss one of the oldest, but almost completely forgotten
problems in the modern literature: Richelot’s approach to construction and investigation
of superintegrable systems separable in orthogonal coordinate systems. Of course, these

12
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n-dimensional superintegrable systems may be obtained using other known methods
(see [3, 9, 11, 15, 22, 27] and references within). Nevertheless, we think that the new
definition (3.10), (3.16)

V =
∑

res
∣∣∣
λ=ei

α(λ)

u2(λ)e(λ)
, u(λ) =

M∏
j=1

(λ − ej ),

of the superintegrable potentials through the defining function e(λ) of the coordinate system
and an arbitrary polynomial α(λ) may be useful in applications. In fact using this definition
we can take any orthogonal coordinate system from [21] and calculate the corresponding
superintegrable Richelot system on the Riemannian manifolds of constant curvature.

It will be interesting to get quantum counterparts of the Richelot integrals of motion and to
study the algebra of integrals of motion in the algebro-geometric terms. Another perspective
consists of the classification of the Richelot superintegrable systems on the Darboux spaces.

One more important issue concerns the relation of multiseparability of the Richelot
superintegrable systems with the classical theory of covers of the hyperelliptic curves.
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